!! used as default html header if there is none in the selected theme. Epsilon

Epsilon --- Introduction ---

This is an exercise on the definition of continuity

A function f is continuous on a point x 0 if

For all ε>0, there exists a δ>0, such that xx 0<δ implies f(x)f(x 0)<ε.
Given a concret function (who is continuous), a x 0 and a ε>0, you have to find a δ>0 which verifies the above condition. And you will be noted according to this δ: more it is close to the best possible value, better will be your note.
Choose the type of online help you want
Other exercises on:

This page is not in its usual appearance because WIMS is unable to recognize your web browser.
In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press ``Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.