OEF rechte lijn in een vlak
--- Introductie ---
This module actually contains 13 exercises on lines in the cartesian
plane and their equations:
slope, distance, points on the line, parallel and perpendicular lines,
intersection,
...
Afstand punt-lijn I
l is de lijn gedefineerd door de vergelijking . Bereken de afstand tussen l en het punt ( , ) .
Afstand punt-lijn II
Let L be the plane line defined by the parametrized equations: x = , y = . Compute the distance between L and the point ( , ) .
Line on point I
Let L be the line define by the equation . What is the value of c so that L contains the point ( , ) ?
Line on point II
Let L be the line define by the equation . What is the value of c so that L contains the point ( , ) ?
Parallel I
Let L be the plane line defined by the equation . Find an equation of the line containing the point ( , ) and parallel to L.
Parallel II
Let L be the plane line defined by the parametrized equations: x = , y = . Find an equation of the line containing the point ( , ) and parallel to L.
Parametrized to equation
Let L be the plane line defined by the parametrized equations: x = , y = . Find an equation of L.
The equation must be of the form ax + by = c.
Perpendicular I
Let L be the plane line defined by the equation . Find an equation of the line containing the point ( , ) and perpendicular to L.
Perpendicular II
Let L be the plane line defined by the parametrized equations: x = , y = . Find an equation of the line containing the point ( , ) and perpendicular to L.
2 points
Find an equation of the line in the plane containing the points ( , ) and ( , ). The equation must be of the form ax + by = c.
Point on line I
Let L be the line define by the equation . Find the value of c such that the point ( , ) is on L.
Point on line II
Let L be the line defined by parametrized equations x = , y = . Find the value of c such that the point ( , ) is on L.
Point and slope
Find an equation of the line in the plane containing the point ( , ), and with slope = . The equation must be of the form ax + by = c.
Deze pagina heeft niet de standaard opmaak, omdat WIMS uw webbrowser niet herkent.
Bedenk goed dat WIMS pagina's interaktief worden gegenereerd; het zijn geen normale
HTML files. Ze moet dus ONLINE interaktief gebruikt worden. Het is verloren moeite
ze met een robot programma op te halen.
- Description: verzameling oefeningen over rechte lijnen en vergelijkingen. This is the main site of WIMS (WWW Interactive Multipurpose Server): interactive exercises, online calculators and plotters, mathematical recreation and games
- Keywords: wims, mathematics, mathematical, math, maths, interactive mathematics, interactive math, interactive maths, mathematic, online, calculator, graphing, exercise, exercice, puzzle, calculus, K-12, algebra, mathématique, interactive, interactive mathematics, interactive mathematical, interactive math, interactive maths, mathematical education, enseignement mathématique, mathematics teaching, teaching mathematics, algebra, geometry, calculus, function, curve, surface, graphing, virtual class, virtual classes, virtual classroom, virtual classrooms, interactive documents, interactive document, geometry, algebra, lijn, punt, helling, , vergelijking, segment, afstand