OEF rechte lijn in een vlak --- Introductie ---

This module actually contains 13 exercises on lines in the cartesian plane and their equations: slope, distance, points on the line, parallel and perpendicular lines, intersection, ...

Afstand punt-lijn I

l is de lijn gedefineerd door de vergelijking

 .

Bereken de afstand tussen l en het punt ( , ) .


Afstand punt-lijn II

Let L be the plane line defined by the parametrized equations:

x =  , y =  .

Compute the distance between L and the point ( , ) .


Line on point I

Let L be the line define by the equation

 .

What is the value of c so that L contains the point ( , ) ?


Line on point II

Let L be the line define by the equation

 .

What is the value of c so that L contains the point ( , ) ?


Parallel I

Let L be the plane line defined by the equation

 .

Find an equation of the line containing the point ( , ) and parallel to L.


Parallel II

Let L be the plane line defined by the parametrized equations:

x =  , y =  .

Find an equation of the line containing the point ( , ) and parallel to L.


Parametrized to equation

Let L be the plane line defined by the parametrized equations:

x =  , y =  .

Find an equation of L.

The equation must be of the form ax + by = c.


Perpendicular I

Let L be the plane line defined by the equation

 .

Find an equation of the line containing the point ( , ) and perpendicular to L.


Perpendicular II

Let L be the plane line defined by the parametrized equations:

x =  , y =  .

Find an equation of the line containing the point ( , ) and perpendicular to L.


2 points

Find an equation of the line in the plane containing the points ( , ) and ( , ).

The equation must be of the form ax + by = c.


Point on line I

Let L be the line define by the equation

 .

Find the value of c such that the point ( , ) is on L.


Point on line II

Let L be the line defined by parametrized equations

x =  , y =  .

Find the value of c such that the point ( , ) is on L.


Point and slope

Find an equation of the line in the plane containing the point ( , ), and with slope = .

The equation must be of the form ax + by = c.

Andere oefeningen over:

Deze pagina heeft niet de standaard opmaak, omdat WIMS uw webbrowser niet herkent.
Om van de WIMS server gebruik te kunnen maken moet uw browser "forms" ondersteunen. Om dit voor uw browser uit te testen, typ hier het woord wims in: en druk op ``Enter''.

Bedenk goed dat WIMS pagina's interaktief worden gegenereerd; het zijn geen normale HTML files. Ze moet dus ONLINE interaktief gebruikt worden. Het is verloren moeite ze met een robot programma op te halen.