# OEF Inverse trigonometric functions --- Introduction ---

This module actually contains 10 exercises on inverse trigonometric functions: arccos, arcsin, arctg, et leurs compositions.

### arccos(cos)

Compute , writing it under the form , where and are rational numbers.

### Linear arccos(cos)

For within the interval [,], one can simplify the function defined by to a linear function of the form . What is this linear function?
Write pi for .

### Definition domain (Arcsin, Arccos)

Let be the function defined by . The definition domain of is composed of disjoint intervals. The definition domain is the reunion of intervals : What are their bounds (in increasing order)
,   , .
If a bound is infinity, write +inf or -inf

### arccos(sin)

Compute , writing it under the form , where and are rational numbers.

### arctg(tg)

Compute , writing it under the form , where and are rational numbers.

### Composed differentiability

Is the function definded by differentiable in the interval [,] ?

### Composed range

Consider the function defined by . Determine the (maximal) interval of definition and the image interval of .
To give your reply, let (open or closed), (open or closed). Write "pi", "F" or "-F" to designate , or .

### Définition et image I

Choisissez les intervalles les plus pertinents dans les énoncés suivants.
La fonction est définie sur l'intervalle .
Son image est .
Cette fonction est dérivable sur .

### Définition et image II

Choisissez les intervalles les plus pertinents dans les énoncés suivants.
La fonction est définie sur l'intervalle .
Son image est .
On a pour .

### Définition et image III

Choisissez les intervalles les plus pertinents dans les énoncés suivants.
La fonction est définie sur l'intervalle .
Son image est .

This page is not in its usual appearance because WIMS is unable to recognize your web browser.
In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.

• Description: collection of exercises on inverse trigonometric functions. This is the main site of WIMS (WWW Interactive Multipurpose Server): interactive exercises, online calculators and plotters, mathematical recreation and games
• Keywords: wims, mathematics, mathematical, math, maths, interactive mathematics, interactive math, interactive maths, mathematic, online, calculator, graphing, exercise, exercice, puzzle, calculus, K-12, algebra, mathématique, interactive, interactive mathematics, interactive mathematical, interactive math, interactive maths, mathematical education, enseignement mathématique, mathematics teaching, teaching mathematics, algebra, geometry, calculus, function, curve, surface, graphing, virtual class, virtual classes, virtual classroom, virtual classrooms, interactive documents, interactive document, analysis, trigonometric_functions,trigonometry